
Deep Generative Models

8. Generative Adversarial Networks

• 국가수리과학연구소 산업수학혁신센터 김민중

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Model Families
• Autoregressive Models

𝑝! 𝒙 =$
"#$

%
𝑝! 𝑥" 𝒙&"

• Variational Autoencoders

𝑝! 𝒙 = &𝑝! 𝒙, 𝒛 𝑑𝒛

• Normalizing Flow Models

𝑝' 𝒙; 𝜃 = 𝑝(𝒇!)$ 𝒙 det
𝜕𝒇!

)$ 𝒙
𝜕𝒙

Recap

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• All the above families are trained by minimizing KL divergence
𝑫 𝑝%*+* ∥ 𝑝! or equivalently maximizing likelihoods (or
approximations)

Recap

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

3𝜃 = argmax
!

9
"#$

,

log 𝑝! 𝒙 " , 𝒙 $, 𝒙 - , ⋯ , 𝒙 , ~𝑝%*+*

• Optimal statistical efficiency
• Assume sufficient model capacity, such that there exists a

unique 𝜃∗ ∈ ℳ that satisfies 𝑝!∗ = 𝑝%*+*
• The convergence of 3𝜃 to 𝜃∗ when 𝑀 → ∞ is the “fastest”

among all statistical methods when using maximum
likelihood training

• Higher likelihood = better lossless compression
• Is the likelihood a good indicator of the quality of samples

generated by the model?

Why maximum likelihood?

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Model Families
• Autoregressive Models: 𝑝! 𝒙 = ∏"#$

% 𝑝! 𝑥" 𝒙&𝒊
• Variational Autoencoders: 𝑝! 𝒙 = ∫𝑝! 𝒙, 𝒛 𝑑𝒛

• Normalizing Flow Models: 𝑝! 𝒙; 𝜃 = 𝑝" 𝒇#$% 𝒙 det &𝒇!
"# 𝒙
&𝒙

• All the above families are trained by minimizing KL divergence
𝐷 𝑝%*+* ∥ 𝑝! or equivalently maximizing likelihoods (or
approximations)

• Today: alternative for 𝐷 𝑝%*+* ∥ 𝑝!

Recap

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Given a finite set of samples from two distributions 𝑆% = 𝒙~𝑃 and
𝑆) = 𝒙~𝑄 , how can we tell if these samples are from the same
distribution? (i.e., 𝑃 = 𝑄?)

Comparing distributions via samples

𝑆$ = 𝒙~𝑃 𝑆% = 𝒙~𝑄

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• 𝑆% = 𝒙~𝑃 and 𝑆) = 𝒙~𝑄
• Test statistic 𝑇 compares 𝑆% and 𝑆). Using 𝑇, determine 𝑃 = 𝑄 or not

• E.g.,

𝑇 𝑆%, 𝑆) =
1
|𝑆%|

3
𝒙∈+#

𝒙 −
1
|𝑆)|

3
𝒙∈+&

𝒙

• If 𝑇 is large enough, then we determine 𝑃 ≠ 𝑄 otherwise we say 𝑃 = 𝑄
• Key observation: Test statistic is likelihood-free since it does not

involve the densities 𝑃 or 𝑄 (only samples)

Two-sample tests

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• A priori, we assume direct access to 𝑆% = 𝐷 = 𝒙~𝑝,-.-
• In addition, we have a model distribution 𝑝#
• Assume that the model distribution permits efficient sampling. Let
𝑆) = 𝒙~𝑝#

• Alternative notion of distance between distributions:
• Train the generative model to minimize a two-sample test

objective between 𝑆% and 𝑆)

Generative modeling and two-sample tests

𝑆$ = 𝒙~𝑝'()(𝑆% = 𝒙~𝑝*

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• In the generative model setup, we know that 𝑆% and 𝑆) come from
different distributions 𝑝,-.- and 𝑝# respectively

• Key idea: Learn a statistic to automatically identify in what way the
two sets of samples 𝑆% and 𝑆) differ from each other

• How? Train a classifier (called a discriminator)!

Two-sample test

𝑆$ = 𝒙~𝑝'()(𝑆% = 𝒙~𝑝*

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Any binary classifier 𝑫𝝓(e.g., neural network) which tries to
distinguish “real” 𝑦 = 1 samples from the dataset and “fake”
𝑦 = 0 samples generated from the model

• Test statistic: −loss of the classifier.
• Low loss, real and fake samples are easy to distinguish (different)
• High loss, real and fake samples are hard to distinguish (similar)

• Goal
• Maximize the two-sample test statistic (in support of the

alternative hypothesis 𝑝,-.- ≠ 𝑝#), or equivalently minimize
classification loss

Two-sample test via a discriminator

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Training objective for discriminator
max
0+

𝑉 𝑝# , 𝐷1 = max
0+

𝐸𝒙~3,-.- log𝐷1 𝒙 + 𝐸𝒙~3! log 1 − 𝐷1 𝒙

≈ max
0+

3
𝒙∈+#

log𝐷1 𝒙 + 3
𝒙∈+&

log 1 − 𝐷1 𝒙

• For a fixed generative model 𝑝#, the discriminator is performing binary
classification with the cross-entropy objective
• Assign probability 1 to true data points 𝒙~𝑝,-.- (in set 𝑆%)
• Assign probability 0 to fake samples 𝒙~𝑝# (in set 𝑆))

Two-sample test via a discriminator

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Training objective for discriminator
max
0+

𝑉 𝑝# , 𝐷1 = max
0+

𝐸𝒙~3,-.- log𝐷1 𝒙 + 𝐸𝒙~3! log 1 − 𝐷1 𝒙

≈ max
0+

3
𝒙∈+#

log𝐷1 𝒙 + 3
𝒙∈+&

log 1 − 𝐷1 𝒙

• For a fixed generative model 𝑝#, the optimal discriminator is given by

𝐷#∗ 𝒙 =
𝑝,-.- 𝒙

𝑝,-.- 𝒙 + 𝑝# 𝒙
• If 𝑝# = 𝑝,-.-, classifier cannot do better than chance (𝐷#∗ 𝒙 = 1/2)

Two-sample test via a discriminator

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• A two-player minimax game between a generator and a discriminator
• Generator

• Directed latent variable model with a deterministic mapping
between 𝒛 and 𝒙 given by 𝐺#
• Sample 𝒛~𝑝", where 𝑝" is a simple prior, e.g., Gaussian
• Set 𝒙 = 𝐺# 𝒛

• Like a flow model, but mapping 𝐺# need not be invertible
• Distribution over 𝑝# 𝒙 over 𝒙 is implicitly defined (no likelihood!)
• Minimizes a two-sample test objective (in support of the null

hypothesis 𝑝,-.- = 𝑝#)

Generative Adversarial Networks

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Example of GAN objective

• Training objective for generator
min
5
max
0

𝑉 𝐺,𝐷 = min
5
max
0

𝐸𝒙~3,-.- log𝐷 𝒙 + 𝐸𝒙~3/ log 1 − 𝐷 𝒙
• For the optimal discriminator 𝐷5∗ ⋅ , we have
𝑉 𝐺,𝐷5∗

= 𝐸𝒙~3,-.- log
𝑝,-.- 𝒙

𝑝,-.- 𝒙 + 𝑝5 𝒙 + 𝐸𝒙~3/ log
𝑝5 𝒙

𝑝,-.- 𝒙 + 𝑝5 𝒙

= 𝐸𝒙~3,-.- log
𝑝,-.- 𝒙

𝑝,-.- 𝒙 + 𝑝5 𝒙
2

+ 𝐸𝒙~3/ log
𝑝5 𝒙

𝑝,-.- 𝒙 + 𝑝5 𝒙
2

− log 4

= 𝐷 𝑝,-.- ∥
𝑝,-.- + 𝑝5

2 + 𝐷 𝑝5 ∥
𝑝,-.- + 𝑝5

2 − log 4
= 2𝐽𝑆𝐷(𝑝,-.- ∥ 𝑝5) − log 4

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Also called as the symmetric KL divergence

𝐽𝑆𝐷 𝑝 ∥ 𝑞 =
1
2
𝐷 𝑝 ∥

𝑝 + 𝑞
2

+
1
2
𝐷 𝑞 ∥

𝑝 + 𝑞
2

• Properties
• 𝐽𝑆𝐷 𝑝 ∥ 𝑞 ≥ 0
• 𝐽𝑆𝐷 𝑝 ∥ 𝑞 = 0 iff 𝑝 = 𝑞
• 𝐽𝑆𝐷 𝑝 ∥ 𝑞 = 𝐽𝑆𝐷 𝑞 ∥ 𝑝
• 𝐽𝑆𝐷 𝑝 ∥ 𝑞 satisfies triangle inequality. I.e., it is a distance

• Optimal generator for the JSD/Negative Cross Entropy GAN
𝑝5 = 𝑝,-.-

• For the optimal discriminator 𝐷5∗
∗ ⋅ and generator 𝐺∗(⋅), we have

𝑉 𝐺∗, 𝐷5∗
∗ = − log 4

Jensen-Shannon Divergence

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Choose 𝑑 𝑝,-.-, 𝑝# to be a two-sample test statistic
• Learn the statistic by training a classifier (discriminator)
• Under ideal conditions, equivalent to choosing 𝑑 𝑝,-.-, 𝑝# to be
𝐽𝑆𝐷 𝑝,-.- ∥ 𝑝#

• Generator 𝐺#(e.g., neural network) is a mapping that generates 𝒙 from
the latent variable 𝒙 and is trained to make it difficult for the classifier
to distinguish

• Pros:
• Loss only requires samples from 𝑝#. No likelihood needed!
• Lots of flexibility for the neural network architecture, any
𝐺# defines a valid sampling procedure

• Fast sampling (single forward pass)
• Cons: very difficult to train in practice

Recap of GANs

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Sample minibatch of 𝑛 training points 𝒙 % , 𝒙) , ⋯ , 𝒙 6 from 𝑝,-.-
• Sample minibatch of 𝑛 noise vectors 𝒛 % , 𝒛) , ⋯ , 𝒛 6 from 𝑝"
• Update the discriminator parameters 𝜙 by stochastic gradient ascent

∇1𝑉 𝐺# , 𝐷1 =
1
𝑛
∇13

78%

6

log𝐷1 𝒙 7 + log 1 − 𝐷1 𝐺# 𝒛 7

• Update the generator parameters 𝜃 by stochastic gradient descent

∇#𝑉 𝐺# , 𝐷1 =
1
𝑛 ∇#3

78%

6

log 1 − 𝐷1 𝐺# 𝒛 7

• Repeat for fixed number of epochs

The GAN training algorithm

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

min
#
max
1

𝑉 𝐺# , 𝐷1 = 𝐸𝒙~3,-.- log𝐷1 𝒙 + 𝐸𝒛~31 log 1 − 𝐷1 𝐺# 𝒛

Alternating optimization in GANs

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Frontiers in GAN research

• GANs have been successfully applied to several domains and tasks
• However, working with GANs can be very challenging in practice

• Unstable optimization
• Mode collapse Evaluation
• Bag of tricks needed to train GANs successfully

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Optimization challenges

• Theorem (informal): If the generator updates are made in function
space and discriminator is optimal at every step, then the generator is
guaranteed to converge to the data distribution

• Unrealistic assumptions!
• In practice, the generator and discriminator loss keeps oscillating

during GAN training
• No robust stopping criteria in practice (unlike MLE)

Source: Mirantha Jayathilaka

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Mode Collapse

• GANs are notorious for suffering from mode collapse
• Intuitively, this refers to the phenomena where the generator of a GAN

collapses to one or few samples (dubbed as “modes”)

Source: Arjovsky et at., 2017

Figure 5: Algorithms trained with a DCGAN generator. Left: WGAN algorithm. Right:

standard GAN formulation. Both algorithms produce high quality samples.

Figure 6: Algorithms trained with a generator without batch normalization and constant

number of filters at every layer (as opposed to duplicating them every time as in [18]).

Aside from taking out batch normalization, the number of parameters is therefore reduced

by a bit more than an order of magnitude. Left: WGAN algorithm. Right: standard GAN

formulation. As we can see the standard GAN failed to learn while the WGAN still was

able to produce samples.

Figure 7: Algorithms trained with an MLP generator with 4 layers and 512 units with ReLU

nonlinearities. The number of parameters is similar to that of a DCGAN, but it lacks a

strong inductive bias for image generation. Left: WGAN algorithm. Right: standard GAN

formulation. The WGAN method still was able to produce samples, lower quality than the

DCGAN, and of higher quality than the MLP of the standard GAN. Note the significant

degree of mode collapse in the GAN MLP.

5 Related Work

There’s been a number of works on the so called Integral Probability Metrics (IPMs)
[15]. Given F a set of functions from X to R, we can define

dF (Pr,P✓) = sup
f2F

Ex⇠Pr [f(x)]� Ex⇠P✓ [f(x)] (4)

as an integral probability metric associated with the function class F . It is easily
verified that if for every f 2 F we have �f 2 F (such as all examples we’ll consider),
then dF is nonnegative, satisfies the triangular inequality, and is symmetric. Thus,
dF is a pseudometric over Prob(X).

While IPMs might seem to share a similar formula, as we will see di↵erent classes
of functions can yeald to radically di↵erent metrics.

• By the Kantorovich-Rubinstein duality [22], we know thatW (Pr,P✓) = dF (Pr,P✓)

13

Figure 5: Algorithms trained with a DCGAN generator. Left: WGAN algorithm. Right:

standard GAN formulation. Both algorithms produce high quality samples.

Figure 6: Algorithms trained with a generator without batch normalization and constant

number of filters at every layer (as opposed to duplicating them every time as in [18]).

Aside from taking out batch normalization, the number of parameters is therefore reduced

by a bit more than an order of magnitude. Left: WGAN algorithm. Right: standard GAN

formulation. As we can see the standard GAN failed to learn while the WGAN still was

able to produce samples.

Figure 7: Algorithms trained with an MLP generator with 4 layers and 512 units with ReLU

nonlinearities. The number of parameters is similar to that of a DCGAN, but it lacks a

strong inductive bias for image generation. Left: WGAN algorithm. Right: standard GAN

formulation. The WGAN method still was able to produce samples, lower quality than the

DCGAN, and of higher quality than the MLP of the standard GAN. Note the significant

degree of mode collapse in the GAN MLP.

5 Related Work

There’s been a number of works on the so called Integral Probability Metrics (IPMs)
[15]. Given F a set of functions from X to R, we can define

dF (Pr,P✓) = sup
f2F

Ex⇠Pr [f(x)]� Ex⇠P✓ [f(x)] (4)

as an integral probability metric associated with the function class F . It is easily
verified that if for every f 2 F we have �f 2 F (such as all examples we’ll consider),
then dF is nonnegative, satisfies the triangular inequality, and is symmetric. Thus,
dF is a pseudometric over Prob(X).

While IPMs might seem to share a similar formula, as we will see di↵erent classes
of functions can yeald to radically di↵erent metrics.

• By the Kantorovich-Rubinstein duality [22], we know thatW (Pr,P✓) = dF (Pr,P✓)

13

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Mode Collapse

• True distribution is a mixture of Gaussians

• The generator distribution keeps oscillating between different modes

Source: Metz et at., 2017

Published as a conference paper at ICLR 2017

Figure 2: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant probability
mass to a single data mode at once.

Figure 3: Unrolled GAN training increases stability for an RNN generator and convolutional dis-
criminator trained on MNIST. The top row was run with 20 unrolling steps. The bottom row is a
standard GAN, with 0 unrolling steps. Images are samples from the generator after the indicated
number of training steps.

generator, but without backpropagating through the generator. In both cases we find that the unrolled
objective performs better.

3.2 PATHOLOGICAL MODEL WITH MISMATCHED GENERATOR AND DISCRIMINATOR

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNNs). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel
images. At each timestep of the generator LSTM, it outputs one column of this image, so that
after 28 timesteps it has output the entire sample. We use a convolutional neural network as the
discriminator. See Appendix C for the full model and training details. Unlike in all previously
successful GAN models, there is no symmetry between the generator and the discriminator in this
task, resulting in a more complex power balance. Results can be seen in Figure 3. Once again,
without unrolling the model quickly collapses, and rotates through a sequence of single modes.
Instead of rotating spatially, it cycles through proto-digit like blobs. When running with unrolling
steps the generator disperses and appears to cover the whole data distribution, as in the 2D example.

6

Published as a conference paper at ICLR 2017

Figure 2: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant probability
mass to a single data mode at once.

Figure 3: Unrolled GAN training increases stability for an RNN generator and convolutional dis-
criminator trained on MNIST. The top row was run with 20 unrolling steps. The bottom row is a
standard GAN, with 0 unrolling steps. Images are samples from the generator after the indicated
number of training steps.

generator, but without backpropagating through the generator. In both cases we find that the unrolled
objective performs better.

3.2 PATHOLOGICAL MODEL WITH MISMATCHED GENERATOR AND DISCRIMINATOR

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNNs). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel
images. At each timestep of the generator LSTM, it outputs one column of this image, so that
after 28 timesteps it has output the entire sample. We use a convolutional neural network as the
discriminator. See Appendix C for the full model and training details. Unlike in all previously
successful GAN models, there is no symmetry between the generator and the discriminator in this
task, resulting in a more complex power balance. Results can be seen in Figure 3. Once again,
without unrolling the model quickly collapses, and rotates through a sequence of single modes.
Instead of rotating spatially, it cycles through proto-digit like blobs. When running with unrolling
steps the generator disperses and appears to cover the whole data distribution, as in the 2D example.

6

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Mode Collapse

• Fixes to mode collapse are mostly empirically driven alternative
architectures, alternative GAN loss, adding regularization terms, etc.

• How to Train a GAN? Tips and tricks to make GANs work by Soumith
Chintala
• https://github.com/soumith/ganhacks

Source: Metz et at., 2017

Published as a conference paper at ICLR 2017

Figure 2: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant probability
mass to a single data mode at once.

Figure 3: Unrolled GAN training increases stability for an RNN generator and convolutional dis-
criminator trained on MNIST. The top row was run with 20 unrolling steps. The bottom row is a
standard GAN, with 0 unrolling steps. Images are samples from the generator after the indicated
number of training steps.

generator, but without backpropagating through the generator. In both cases we find that the unrolled
objective performs better.

3.2 PATHOLOGICAL MODEL WITH MISMATCHED GENERATOR AND DISCRIMINATOR

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNNs). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel
images. At each timestep of the generator LSTM, it outputs one column of this image, so that
after 28 timesteps it has output the entire sample. We use a convolutional neural network as the
discriminator. See Appendix C for the full model and training details. Unlike in all previously
successful GAN models, there is no symmetry between the generator and the discriminator in this
task, resulting in a more complex power balance. Results can be seen in Figure 3. Once again,
without unrolling the model quickly collapses, and rotates through a sequence of single modes.
Instead of rotating spatially, it cycles through proto-digit like blobs. When running with unrolling
steps the generator disperses and appears to cover the whole data distribution, as in the 2D example.

6

https://github.com/soumith/ganhacks
https://github.com/soumith/ganhacks

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Recap

• Likelihood-free training
• Training objective for GANs

min
5
max
0

𝑉 𝐺,𝐷 = 𝐸𝒙~3,-.- log𝐷 𝒙 + 𝐸𝒙~3/ log 1 − 𝐷 𝒙
• With the optimal discriminator 𝐷5∗ , we see GAN minimizes a scaled and

shifted Jensen-Shannon divergence
min
5
2𝐽𝑆𝐷(𝑝,-.- ∥ 𝑝5) − log 4

• Parameterize 𝐷 by 𝜙 and 𝐺 by 𝜃
• Prior distribution 𝑝"

min
#
max
1

𝐸𝒙~3,-.- log𝐷1 𝒙 + 𝐸𝒛~31 log 1 − 𝐷1 𝐺# 𝒛

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

GAN Zoo

• GAN Zoo: List of all named GANs
• https://github.com/hindupuravinash/the-gan-zoo

https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Beyond KL and Jenson-Shannon Divergence

• What choices do we have for 𝑑 ⋅ ?
• KL divergence: Autoregressive Models, Flow models
• (scaled and shifted) Jensen-Shannon divergence (approximately):

original GAN objective

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

𝒇-divergences

• What choices do we have for 𝑑 ⋅ ?
• Given two densities 𝑝 and 𝑞, the 𝑓-divergence is given by

𝐷: 𝑝, 𝑞 = 𝐸𝒙~; 𝑓
𝑝 𝒙
𝑞 𝒙

• Where 𝑓 is any convex, lower-semicontinuous function with 𝑓 1 = 0
• Convex: Line joining any two points lies above the function
• Lower-semicontinuous

lim inf
<→<2

𝑓 𝑥 ≥ 𝑓 𝑥>
• for any point 𝑥>
• Jensen’s inequality

𝐸𝒙~; 𝑓
𝑝 𝒙
𝑞 𝒙

≥ 𝑓 𝐸𝒙~;
𝑝 𝒙
𝑞 𝒙

= 𝑓 ∫ 𝑝 𝒙 𝑑𝒙 = 𝑓 1 = 0

• Example: KL divergence with 𝑓 𝑢 = 𝑢 log 𝑢

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

𝒇-divergences

Supplementary Materials

A Introduction

We provide additional material to support the content presented in the paper. The text is structured as
follows. In Section B we present an extended list of f-divergences, corresponding generator functions
and their convex conjugates. In Section C we provide the proof of Theorem 2 from Section 3.
In Section D we discuss the differences between current (to our knowledge) GAN optimisation
algorithms. Section E provides a proof of concept of our approach by fitting a Gaussian to a mixture
of Gaussians using various divergence measures. Finally, in Section F we present the details of the
network architectures used in Section 4 of the main text.

B f -divergences and Generator-Conjugate Pairs

In Table 5 we show an extended list of f-divergences Df (PkQ) together with their generators
f(u) and the corresponding optimal variational functions T ⇤(x). For all divergences we have
f : domf ! R [{+1}, where f is convex and lower-semicontinuous. Also we have f(1) = 0
which ensures that Df (PkP) = 0 for any distribution P . As shown by [10] GAN is related to the
Jensen-Shannon divergence through DGAN = 2DJS � log(4). The GAN generator function f does
not satisfy f(1) = 0 hence DGAN(PkP) 6= 0.

Table 6 lists the convex conjugate functions f⇤(t) of the generator functions f(u) in Table 5, their
domains, as well as the activation functions gf we use in the last layers of the generator networks to
obtain a correct mapping of the network outputs into the domains of the conjugate functions.

The panels of Figure 4 show the generator functions and the corresponding convex conjugate functions
for a variety of f-divergences.

Name Df (PkQ) Generator f(u) T ⇤(x)

Total variation 1
2

R
|p(x)� q(x)| dx 1

2 |u� 1| 1
2 sign(

p(x)
q(x) � 1)

Kullback-Leibler
R
p(x) log p(x)

q(x) dx u log u 1 + log p(x)
q(x)

Reverse Kullback-Leibler
R
q(x) log q(x)

p(x) dx � log u � q(x)
p(x)

Pearson �2
R (q(x)�p(x))2

p(x) dx (u� 1)2 2(p(x)q(x) � 1)

Neyman �2
R (p(x)�q(x))2

q(x) dx (1�u)2

u 1�
⇥ q(x)
p(x)

⇤2

Squared Hellinger
R ⇣p

p(x)�
p

q(x)
⌘2

dx (
p
u� 1)

2
(
q

p(x)
q(x) � 1) ·

q
q(x)
p(x)

Jeffrey
R
(p(x)� q(x)) log

⇣
p(x)
q(x)

⌘
dx (u� 1) log u 1 + log p(x)

q(x) �
q(x)
p(x)

Jensen-Shannon 1
2

R
p(x) log 2p(x)

p(x)+q(x) + q(x) log 2q(x)
p(x)+q(x) dx �(u+ 1) log 1+u

2 + u log u log 2p(x)
p(x)+q(x)

Jensen-Shannon-weighted
R
p(x)⇡ log p(x)

⇡p(x)+(1�⇡)q(x) + (1� ⇡)q(x) log q(x)
⇡p(x)+(1�⇡)q(x) dx ⇡u log u� (1� ⇡ + ⇡u) log(1� ⇡ + ⇡u) ⇡ log p(x)

(1�⇡)q(x)+⇡p(x)

GAN
R
p(x) log 2p(x)

p(x)+q(x) + q(x) log 2q(x)
p(x)+q(x) dx� log(4) u log u� (u+ 1) log(u+ 1) log p(x)

p(x)+q(x)

↵-divergence (↵ /2 {0, 1}) 1
↵(↵�1)

R ⇣
p(x)

h⇣
q(x)
p(x)

⌘↵
� 1

i
� ↵(q(x)� p(x))

⌘
dx 1

↵(↵�1) (u
↵ � 1� ↵(u� 1)) 1

↵�1

h⇥p(x)
q(x)

⇤↵�1 � 1
i

Table 5: List of f -divergences Df (PkQ) together with generator functions and the optimal variational
functions.

C Proof of Theorem 1

In this section we present the proof of Theorem 2 from Section 3 of the main text. For completeness,
we reiterate the conditions and the theorem.

We assume that F is strongly convex in ✓ and strongly concave in ! such that

r✓F (✓⇤,!⇤) = 0, r!F (✓⇤,!⇤) = 0, (11)

r2
✓F (✓,!) ⌫ �I, r2

!F (✓,!) � ��I. (12)

These assumptions are necessary except for the “strong” part in order to define the type of saddle
points that are valid solutions of our variational framework.

11

Source: Nowozin et at., 2017

Thanks

