Deep Generative Models

8. Generative Adversarial Networks

• 국가수리과학연구소 산업수학혁신센터 김민중

Recap

- Model Families
 - Autoregressive Models

$$p_{\theta}(\boldsymbol{x}) = \prod_{i=1}^{d} p_{\theta}(x_i | \boldsymbol{x}_{< i})$$

• Variational Autoencoders

$$p_{\theta}(\boldsymbol{x}) = \int p_{\theta}(\boldsymbol{x}, \boldsymbol{z}) d\boldsymbol{z}$$

• Normalizing Flow Models

$$p_X(\boldsymbol{x};\boldsymbol{\theta}) = p_Z\left(\boldsymbol{f}_{\boldsymbol{\theta}}^{-1}(\boldsymbol{x})\right) \left| \det\left(\frac{\partial \boldsymbol{f}_{\boldsymbol{\theta}}^{-1}(\boldsymbol{x})}{\partial \boldsymbol{x}}\right) \right|$$

Recap

• All the above families are trained by minimizing **KL divergence** $D(p_{data} \parallel p_{\theta})$ or equivalently maximizing **likelihoods** (or approximations)

Why maximum likelihood?

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{M} \log p_{\theta}(\boldsymbol{x}^{(i)}), \qquad \boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \cdots, \boldsymbol{x}^{(M)} \sim p_{data}$$

- Optimal statistical efficiency
 - Assume sufficient model capacity, such that there exists a unique $\theta^* \in \mathcal{M}$ that satisfies $p_{\theta^*} = p_{data}$
 - The convergence of $\hat{\theta}$ to θ^* when $M \to \infty$ is the "fastest" among all statistical methods when using maximum likelihood training
- Higher likelihood = better lossless compression
- Is the likelihood a good indicator of the quality of samples generated by the model?

Recap

- Model Families
 - Autoregressive Models: $p_{\theta}(\mathbf{x}) = \prod_{i=1}^{d} p_{\theta}(x_i | \mathbf{x}_{< i})$
 - Variational Autoencoders: $p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z}$
 - Normalizing Flow Models: $p_X(\mathbf{x}; \theta) = p_Z\left(\mathbf{f}_{\theta}^{-1}(\mathbf{x})\right) \left| \det\left(\frac{\partial f_{\theta}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right) \right|$
- All the above families are trained by minimizing KL divergence $D(p_{data} \parallel p_{\theta})$ or equivalently maximizing likelihoods (or approximations)
- Today: alternative for $D(p_{data} \parallel p_{\theta})$

Comparing distributions via samples

Given a finite set of samples from two distributions S₁ = {x~P} and S₂ = {x~Q}, how can we tell if these samples are from the same distribution? (i.e., P = Q?)

$$S_1 = \{\boldsymbol{x} \sim \boldsymbol{P}\}$$

VS.

$$S_2 = \{\boldsymbol{x} \sim Q\}$$

Two-sample tests

• $S_1 = \{x \sim P\}$ and $S_2 = \{x \sim Q\}$

Test statistic T compares S₁ and S₂. Using T, determine P = Q or not
E.g.,

$$T(S_1, S_2) = \left| \frac{1}{|S_1|} \sum_{x \in S_1} x - \frac{1}{|S_2|} \sum_{x \in S_2} x \right|$$

- If T is large enough, then we determine $P \neq Q$ otherwise we say P = Q
- Key observation: Test statistic is likelihood-free since it does not involve the densities *P* or *Q* (only samples)

Generative modeling and two-sample tests

- A priori, we assume direct access to $S_1 = D = \{x \sim p_{data}\}$
- In addition, we have a model distribution p_{θ}
- Assume that the model distribution permits efficient sampling. Let $S_2 = \{x \sim p_{\theta}\}$
- Alternative notion of distance between distributions:
 - Train the generative model to minimize a two-sample test objective between S_1 and S_2

 $S_1 = \{ \boldsymbol{x} \sim p_{data} \}$

 $S_2 = \{\boldsymbol{x} \sim p_{\theta}\}$

Two-sample test

- In the generative model setup, we know that S_1 and S_2 come from different distributions p_{data} and p_{θ} respectively
- Key idea: Learn a statistic to automatically identify in what way the two sets of samples S_1 and S_2 differ from each other
- How? Train a classifier (called a discriminator)!

 $S_1 = \{ \boldsymbol{x} \sim p_{data} \}$

 $S_2 = \{\boldsymbol{x} \sim p_{\theta}\}$

Two-sample test via a discriminator

- Any binary classifier D_{ϕ} (e.g., neural network) which tries to distinguish "real" (y = 1) samples from the dataset and "fake" (y = 0) samples generated from the model
- Test statistic: —loss of the classifier.
 - Low loss, real and fake samples are easy to distinguish (different)
 - High loss, real and fake samples are hard to distinguish (similar)
- Goal
 - Maximize the two-sample test statistic (in support of the alternative hypothesis $p_{data} \neq p_{\theta}$), or equivalently minimize classification loss

Two-sample test via a discriminator

• Training objective for discriminator

$$\max_{\substack{D_{\phi} \\ D_{\phi}}} V(p_{\theta}, D_{\phi}) = \max_{\substack{D_{\phi} \\ D_{\phi}}} E_{x \sim p_{data}} [\log D_{\phi}(x)] + E_{x \sim p_{\theta}} \left[\log \left(1 - D_{\phi}(x) \right) \right]$$
$$\approx \max_{\substack{D_{\phi} \\ x \in S_{1}}} \log D_{\phi}(x) + \sum_{x \in S_{2}} \log \left(1 - D_{\phi}(x) \right)$$

- For a fixed generative model p_{θ} , the discriminator is performing binary classification with the cross-entropy objective
 - Assign probability 1 to true data points $x \sim p_{data}$ (in set S_1)
 - Assign probability 0 to fake samples $\mathbf{x} \sim p_{\theta}$ (in set S_2)

Two-sample test via a discriminator

- Training objective for discriminator $\max_{\boldsymbol{D}_{\boldsymbol{\phi}}} V(p_{\theta}, \boldsymbol{D}_{\boldsymbol{\phi}}) = \max_{\boldsymbol{D}_{\boldsymbol{\phi}}} E_{\boldsymbol{x} \sim p_{data}} \left[\log \boldsymbol{D}_{\boldsymbol{\phi}}(\boldsymbol{x}) \right] + E_{\boldsymbol{x} \sim p_{\theta}} \left[\log \left(1 - \boldsymbol{D}_{\boldsymbol{\phi}}(\boldsymbol{x}) \right) \right]$ $\approx \max_{D_{\phi}} \sum_{x \in S_1} \log D_{\phi}(x) + \sum_{x \in S_2} \log \left(1 - D_{\phi}(x)\right)$ • For a fixed generative model p_{θ} , the optimal discriminator is given by $D_{\theta}^{*}(\mathbf{x}) = \frac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_{\theta}(\mathbf{x})}$ • If $p_{\theta} = p_{data}$, classifier cannot do better than chance $(D_{\theta}^{*}(\mathbf{x}) = 1/2)$

Generative Adversarial Networks

- A two-player minimax game between a generator and a discriminator
- Generator
 - Directed latent variable model with a deterministic mapping between z and x given by G_{θ}
 - Sample $z \sim p_Z$, where p_Z is a simple prior, e.g., Gaussian
 - Set $x = G_{\theta}(z)$
 - Like a flow model, but mapping G_{θ} need not be invertible
 - Distribution over $p_{\theta}(x)$ over x is implicitly defined (no likelihood!)
 - Minimizes a two-sample test objective (in support of the null hypothesis $p_{data} = p_{\theta}$)

Example of GAN objective

 $U(C D^*)$

Training objective for generator
 min max V(G, D) = min max E_{x~pdata} [log D(x)] + E_{x~pg} [log(1 - D(x))]

 For the optimal discriminator D^{*}_G(·), we have

$$V(G, D_G) = E_{x \sim p_{data}} \left[\log \frac{p_{data}(x)}{p_{data}(x) + p_G(x)} \right] + E_{x \sim p_G} \left[\log \frac{p_G(x)}{p_{data}(x) + p_G(x)} \right]$$

= $E_{x \sim p_{data}} \left[\log \frac{p_{data}(x)}{\frac{p_{data}(x) + p_G(x)}{2}} \right] + E_{x \sim p_G} \left[\log \frac{p_G(x)}{\frac{p_{data}(x) + p_G(x)}{2}} \right] - \log 4$
= $D \left(p_{data} \parallel \frac{p_{data} + p_G}{2} \right) + D \left(p_G \parallel \frac{p_{data} + p_G}{2} \right) - \log 4$
= $2JSD(p_{data} \parallel p_G) - \log 4$

Jensen-Shannon Divergence

• Also called as the symmetric KL divergence

$$JSD(p \parallel q) = \frac{1}{2}D\left(p \parallel \frac{p+q}{2}\right) + \frac{1}{2}D\left(q \parallel \frac{p+q}{2}\right)$$

- Properties
 - $JSD(p \parallel q) \ge 0$
 - $JSD(p \parallel q) = 0$ iff p = q
 - $JSD(p \parallel q) = JSD(q \parallel p)$
 - $\sqrt{JSD(p \parallel q)}$ satisfies triangle inequality. I.e., it is a distance
- Optimal generator for the JSD/Negative Cross Entropy GAN

For the optimal discriminator
$$D^*_{G^*}(\cdot)$$
 and generator $G^*(\cdot)$, we have $V(G^*, D^*_{G^*}) = -\log 4$

 $n_{c} \equiv n_{data}$

Recap of GANs

- Choose $d(p_{data}, p_{\theta})$ to be a two-sample test statistic
 - Learn the statistic by training a classifier (discriminator)
 - Under ideal conditions, equivalent to choosing $d(p_{data}, p_{\theta})$ to be $JSD(p_{data} \parallel p_{\theta})$
- Generator G_{θ} (e.g., neural network) is a mapping that generates x from the latent variable x and is trained to make it difficult for the classifier to distinguish
- Pros:
 - Loss only requires samples from p_{θ} . No likelihood needed!
 - Lots of flexibility for the neural network architecture, any G_{θ} defines a valid sampling procedure
 - Fast sampling (single forward pass)
- Cons: very difficult to train in practice

The GAN training algorithm

- Sample minibatch of *n* training points $x^{(1)}, x^{(2)}, \dots, x^{(n)}$ from p_{data}
- Sample minibatch of n noise vectors $\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \cdots, \mathbf{z}^{(n)}$ from p_Z
- Update the discriminator parameters ϕ by stochastic gradient ascent

$$\nabla_{\boldsymbol{\phi}} V(G_{\theta}, \boldsymbol{D}_{\boldsymbol{\phi}}) = \frac{1}{n} \nabla_{\boldsymbol{\phi}} \sum_{i=1}^{n} \left[\log \boldsymbol{D}_{\boldsymbol{\phi}}(\boldsymbol{x}^{(i)}) + \log \left(1 - \boldsymbol{D}_{\boldsymbol{\phi}}\left(G_{\theta}(\boldsymbol{z}^{(i)}) \right) \right) \right]$$

• Update the generator parameters θ by stochastic gradient descent

$$\nabla_{\boldsymbol{\theta}} V(\boldsymbol{G}_{\boldsymbol{\theta}}, \boldsymbol{D}_{\boldsymbol{\phi}}) = \frac{1}{n} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log\left(1 - D_{\boldsymbol{\phi}}\left(\boldsymbol{G}_{\boldsymbol{\theta}}(\boldsymbol{z}^{(i)})\right)\right)$$

• Repeat for fixed number of epochs

Alternating optimization in GANs

$$\min_{\theta} \max_{\phi} V(G_{\theta}, D_{\phi}) = E_{\boldsymbol{x} \sim p_{data}} [\log D_{\phi}(\boldsymbol{x})] + E_{\boldsymbol{z} \sim p_{Z}} [\log (1 - D_{\phi}(G_{\theta}(\boldsymbol{z})))]$$

Frontiers in GAN research

- GANs have been successfully applied to several domains and tasks
- However, working with GANs can be very challenging in practice
 - Unstable optimization
 - Mode collapse Evaluation
 - Bag of tricks needed to train GANs successfully

2018

Optimization challenges

- **Theorem (informal)**: If the generator updates are made in function space and discriminator is optimal at every step, then the generator is guaranteed to converge to the data distribution
- Unrealistic assumptions!
- In practice, the generator and discriminator loss keeps oscillating during GAN training
- No robust stopping criteria in practice (unlike MLE)

Source: Mirantha Jayathilaka

Mode Collapse

- GANs are notorious for suffering from mode collapse
- Intuitively, this refers to the phenomena where the generator of a GAN collapses to one or few samples (dubbed as "modes")

Source: Arjovsky et at., 2017

Mode Collapse

• True distribution is a mixture of Gaussians

• The generator distribution keeps oscillating between different modes

Mode Collapse

- Fixes to mode collapse are mostly empirically driven alternative architectures, alternative GAN loss, adding regularization terms, etc.
- How to Train a GAN? Tips and tricks to make GANs work by Soumith Chintala
 - <u>https://github.com/soumith/ganhacks</u>

Source: Metz et at., 2017

Recap

- Likelihood-free training
- Training objective for GANs

 $\min_{G} \max_{D} V(G,D) = E_{\boldsymbol{x} \sim p_{data}} [\log D(\boldsymbol{x})] + E_{\boldsymbol{x} \sim p_{G}} [\log(1 - D(\boldsymbol{x}))]$

• With the optimal discriminator D_G^* , we see GAN minimizes a scaled and shifted Jensen–Shannon divergence

 $\min_{G} 2JSD(p_{data} \parallel p_G) - \log 4$

- Parameterize D by ϕ and G by θ
- Prior distribution p_Z

 $\min_{\theta} \max_{\phi} E_{\boldsymbol{x} \sim p_{data}} \left[\log D_{\phi}(\boldsymbol{x}) \right] + E_{\boldsymbol{z} \sim p_{Z}} \left[\log \left(1 - D_{\phi} (G_{\theta}(\boldsymbol{z})) \right) \right]$

GAN Zoo

- GAN Zoo: List of all named GANs
 - https://github.com/hindupuravinash/the-gan-zoo

Cumulative number of named GAN papers by month

Beyond KL and Jenson-Shannon Divergence

- What choices do we have for $d(\cdot)$?
 - KL divergence: Autoregressive Models, Flow models
 - (scaled and shifted) Jensen-Shannon divergence (approximately): original GAN objective

f-divergences

- What choices do we have for $d(\cdot)$?
- Given two densities p and q, the f-divergence is given by

$$D_f(p,q) = E_{\boldsymbol{x} \sim q} \left[f\left(\frac{p(\boldsymbol{x})}{q(\boldsymbol{x})}\right) \right]$$

- Where f is any convex, lower-semicontinuous function with f(1) = 0
- Convex: Line joining any two points lies above the function
- Lower-semicontinuous

$$\liminf_{x \to x_0} f(x) \ge f(x_0)$$

- for any point x₀
- Jensen's inequality

$$E_{\boldsymbol{x}\sim q}\left[f\left(\frac{p(\boldsymbol{x})}{q(\boldsymbol{x})}\right)\right] \ge f\left(E_{\boldsymbol{x}\sim q}\left[\frac{p(\boldsymbol{x})}{q(\boldsymbol{x})}\right]\right) = f\left(\int p(\boldsymbol{x})d\boldsymbol{x}\right) = f(1) = 0$$

 X_0

• Example: KL divergence with $f(u) = u \log u$

f-divergences

Name	$D_f(P Q)$	Generator $f(u)$
Total variation	$rac{1}{2}\int \left p(x) - q(x) ight \mathrm{d}x$	$\frac{1}{2} u-1 $
Kullback-Leibler	$\int p(x)\lograc{p(x)}{q(x)}\mathrm{d}x$	$u \log u$
Reverse Kullback-Leibler	$\int q(x)\log rac{\dot{q}(x)}{p(x)}\mathrm{d}x$	$-\log u$
Pearson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)} \mathrm{d}x$	$(u-1)^2$
Neyman χ^2	$\int \frac{(p(x)-q(x))^2}{q(x)} \mathrm{d}x$	$\frac{(1-u)^2}{u}$
Squared Hellinger	$\int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 \mathrm{d}x$	$\left(\sqrt{u}-1\right)^2$
Jeffrey	$\int (p(x) - q(x)) \log\left(\frac{p(x)}{q(x)}\right) \mathrm{d}x$	$(u-1)\log u$
Jensen-Shannon	$\frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx$	$-(u+1)\log \tfrac{1+u}{2} + u\log u$
Jensen-Shannon-weighted	$\int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1 - \pi)q(x)} + (1 - \pi)q(x) \log \frac{q(x)}{\pi p(x) + (1 - \pi)q(x)} dx$	$\pi u \log u - (1 - \pi + \pi u) \log(1 - \pi + \pi u)$
GAN	$\int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1 - \pi)q(x)} + (1 - \pi)q(x) \log \frac{q(x)}{\pi p(x) + (1 - \pi)q(x)} dx$ $\int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} dx - \log(4)$	$u\log u - (u+1)\log(u+1)$
α -divergence ($\alpha \notin \{0,1\}$)	$(\Gamma (\cdot) \land \alpha)$	$\frac{1}{\alpha(\alpha-1)}\left(u^{\alpha}-1-\alpha(u-1)\right)$

Source: Nowozin et at., 2017

Thanks